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Mechanical properties of the materials used for transportations and industrial machinery 

under high strain rate loading conditions such as seismic loading are required to provide 

appropriate safety assessment to these mechanical structures. The Split Hopkinson Pressure Bar 

(SHPB) technique with a special experimental apparatus can be used to obtain the material 

behavior under high strain rate loading conditions. In this paper, dynamic deformation 

behaviors of the aluminum alloys such as AI2024-T4, A16061T-6 and AI7075-T6 under both 

high strain rate compressive and tensile loading conditions are determined using the SHPB 

technique. 
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1. I n t r o d u c t i o n  

The compressive and tensile tests under high 

strain rate loading should be distinguished from 

those of low strain rate. The effect of inertia is 

not negligible in the test under high strain rate 

loadings. The manifestation of inertia in a dy- 

namic test is mainly threefold. First, it induces a 

radial component to the stress that may not be 

negligible in some conditions. Second, inertia is 

responsible for the heterogeneity of deformation 

present in the specimen at the beginning of the 

test. And third, inertia affects the elongation sta- 

bility. 

Recently, we may find many cases in that mec- 

hanical materials are being used under extreme 

conditions such as forging and rolling charac- 

terized by high stresses and high strain rate load- 

ing. In order to design structures used under ex- 

treme loading conditions, we need to know mec- 
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hanical deformation behaviors of the material 

under high strain rate in detail, it is not easy, 

however, to get the mechanical properties under 

the high strain rate loading condition. 

A specific experimental method, the split Hop- 

kinson pressure bar (SHPB) technique has been 

suggested to determine the dynamic material pro- 

perties under the impact compressive and tensile 

loading conditions with strain-rate of the order 

of 103/s (Hopkinson, 1914). SHPB has been com- 

monly used to obtain the high strain rate between 

103/s and 104/s (Kang et al, 1997; Huh et al, 

2002). 

2. Theory 

2.1 O n e - d i m e n s i o n a l  e l a s t i c  w a v e  propaga-  

t ion in a bar 

Pochhanmmer and Chree solved the longitudi- 

nal and radial inertia effect (Pochhammer, 1876 : 

Chree, 1889) on a specimen perfectly contacted 

with the bars in SHPB experiment. By this result, 

the specimen geometry in Hopkinson bar experi- 

ment could be designed to remove inertia effect. 

If the stress wave were a cosine wave of wa- 

velength, /~, the longitudinal deibrmation and 

stress by the stress wave might be constant, when 

R//~<<I (Davies, 1948). 

bars. General compressive elastic wave propaga- 

tion behavior in SHPB is shown in Fig. 1. When 

the striker bar impacts the incident bar, rectangu- 

lar stress pulse is generated and travels along the 

incident bar until it hits the specimen. Part of the 

incident stress pulse reflects from the bar/spec- 

imen interface because of the material impedance 

mismatch, and part of it transmits through the 

specimen. The transmitted pulse emitted from the 

specimen travels along the transmitted bar until it 

hits the end of the bar. The stress, strain and 

strain rate in the specimen can be obtained in 

terms of the recorded strains of the two bars as 

follows (Follansbee, 1985). 

A 
Vst~ec,men= E (  ~ )~r (1) 

strain gage A strain gage B 

7 ° I I = [] I 
striker incident bar transmitted bar 

2.2 U n i f o r m  d e f o r m a t i o n  o f  the s p e c i m e n  Fig. 1 

It is difficult to analyze the deformation of a 

specimen due to the effects of plastic wave pro- 

pagation and friction, while the elastic wave pro- 

pagation in the bar may be expected. The inf- 

luence of friction is reduced by spreading a vis- 

cous lubrication cream evenly. Even though the 

specimen deforms uniformly, errors may be gen- '= 
I I 

erated by the longitudinal and radial inertia striker 
caused by the sudden particle acceleration in high 

strain rate. 

2.3 The  s t r e s s - s t r a i n  ra te  d e t e r m i n a t i o n  by 

S H P B  

2.3.1 C o m p r e s s i v e  t e s t  

In conventional SHPB technique, the specimen 

is located in between incident and transmitted 

I 

I 
A schematic diagram of specimen and elastic 
stress wave propagation for the compressive 

test 

strain gage A strain gage B 
specimen 

incident I~ar t r~nsrnitted bar 

Fig. 2 

' i i 

A schematic diagram of specimen and elastic 
stress wave propagation for the tensile test 
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T2C° f eRdt (2) C s p e c i m e n  - -  t 

de( t )  - 2 C o  
espec~,e,-- dt  -- L eR(t) (3) 

2.3.2 Tensile test  
In the tension test using SHPB technique, spec- 

imen is located in between incident and transmit- 

ted bars. General tensile elastic wave propagation 

behavior in SHPB is shown in Fig. 2. 

The compressive stress pulse generated in the 

incident bar by the impact of striker bar travels 

along the specimen and the split ring (see Fig. 4). 

The compressive stress pulse propagates until it 

arrives the end of the transmitted bar. The com- 

pressive stress pulse arrived the end of the trans- 

mitted bar reflects by the shape of tensile stress 

pulse. The tensile stress pulse is recorded at strain 

gage B. Part of tensile stress pulse reached at the 

specimen propagates to the incident bar, and the 

rest of the wave reflects to the transmitted bar. It 

is important to locate the strain gages where no 

interference between the tensile stress wave (er) 

and the spurious wave generated at the incident 

bar/split  ring interface. The spurious wave has 

bad effect on the results because it applies preten- 

sion to the specimen. But this phenomenon is 

unavoidable in high strain rate tests. The split 

ring located between incident bar and transmitted 

bar has no effects on the tensile loading because it 

does not mechanically jointed to the two bars. 

The snug fit between split ring and incident and 

transmitted bars is important to keep one-dimen- 

sional wave propagation condition. 

3. Experiment 

3.1 Loading apparatus and striker bar 

In this study, the incident, transmitted and stri- 

ker bars are made of STB2 whose yield strength is 

490 MPa and the modulus of elasticity is 225 Gpa, 

SHPB apparatus used for this study is shown in 

Photo I. 

The length and the diameter of the striker are 

300 mm and 16 mm, respectively. The diameters 

of incident bar and transmitted bar have the same 

Photo. 1 experimental setupeke 

dimension as the striker bar. 

3.2 Incident and transmitted bars 

3.2.1 Compressive test  
The smaller the diameter of the pressure bars, 

the higher strain rate in the specimen will be 

gained. The bar length has to be twice of 

wavelength of stress pulse in the bars, so the ratio 

of the length to the diameter of the bars was 

designed to be 100. These two bars are made of 

the same material of striker bar and have the 

identical diameter with striker bar. To obtain 

perfect contact of the incident and the transmitted 

bar surfaces, the ends of the bars are finely grind- 

ed (Lee et al, 1998: Lee et al, 2000: Lee et al, 

2000). 

3.2.2 Tensile test 

The incident bar and transmitted bar are 

screwed to fix the specimen in them. When we set 

the specimen into the incident and transmitted 

bars, we turn the specimen in one direction. So 

one of the bars is machined right-hand screw and 

the other is left-hand screw. The cross-sections 

are heat treated to prevent deformation by con- 

tinuous impacts. 

3.3 Straight- l ine guider and stopper 
One of the most important things of the appa- 

ratus is the straight-line guide so that the stress 

pulse can propagate in one dimension. After fine 

grinding an I-beam, the bar is setup on the beam 
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by using the fine bearing system. 

3.4 Ve loc i ty  and wave  measurement  sys tem 

To measure the velocity, three photo sensors 

are located at the distance of 50 mm in the end of 

the gun barrel. When the striker cuts the light of 

the photo sensors, and oscilloscope, Nicolet 410, 

gets electric signals. By the strain gages bonded on 

the middle of the bars, the stress pulse can be 

obtained. 

3.5 Spec imen preparation 

3.5.1 Compress ive  

The geometry of specimen should meet the 

condition to minimize the effect of inertia. So the 

specimens used for this study have 5mm thickness 

and 10 mm diameter. The geometry of specimen is 

shown in Fig. 3. 

3.5.2 Tens i le  

The whole length, diameter and gage length of 

specimen is 34 mm, 4 mm and 12 mm, respective- 

Fig. 3 Geometry of compressive specimen 

. 30 . 

I -  - I  - - I  

c o [ I o r  

I n c i d e n ± ~ b a r  _~____ ±ransmi±ier Iolr 

~sptlt rlng 
Fig. 4 Specimen geometry and setting between inci- 

dent and transmitted bar (dimension=mm) 

ly. The both ends of specimen manufacture in a 

screw shape in order to be fixed in incident and 

transmitted bars(Lee et al, 2000; Bragov, 1994). 

The ratio of cross-sectional area of split ring to 

pressure bar cross-sectional area is the three to 

four. The ratio of cross-sectional area of split ring 

to specimen cross-sectional area is twelve to one. 

Geometry of split ring and collar is shown in 

Fig. 4. 

4.  R e s u l t s  a n d  D i s c u s s i o n  

The typical compressive and tensile signal out- 

puts form strain gages attached on incident and 

transmitted bars, respectively, are shown in Fig. 5. 

It is noted that the superposed wave of the ref- 
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Photo. 2 Aluminum specimen before dynamic 

tensile test 

Photo. 3 Aluminum specimen after dynamic 

tensile test 
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0.02 o 03 o04 0.05 

Fig. 6(a) Compressive stress strain curve for 

2024-T4 
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Tensile stress-strain curve for 2024-T4 

lected and transmitted wave are almost the same 

as the incident waves. 

Photos 2 and 3 shows the spcimen configura-  

tion before and after the test, respectively. 

It is interesting to note that the cup and cone 

fracture is clearly distinguished. 

Using Eqs. (1) and (2), the relat ionship be- 

tween stress and strain under high strain rate 

compressive and tensile loading condi t ions  can be 

obtained. Fig. 6 shows the typical dynamic com- 

pressive and tensile stress-strain behavior  up to 

strain of  0.05 for AI2024-T4. We have noted in 

this paper the initial range o f  the whole stress- 

strain curve as marked by an elliptical port ion 

shown in Fig. 6 since the first yielding occurred in 

this region. (Zukas, 1990) The typical results of  

initial range of  the whole stress-strain curve and 

numerical  model ings for various a luminum alloys 

are shown in Fig. 7. The effects of  strain rate on 

the relationships of  stress-strain for varying alu- 

minum alloys are found to be pronounced for 

both compressive and tensile loading cases, Fur-  

thermore,  it is noted that the general mechanical  

deformation behaviors  under high strain rate of  

compressive and tensile loading condi t ions  are 

quite different from each other  as shown in Fig. 7. 

A polynomia l  best fitting is utilized to model  

the dynamic stress-strain behavior  in case for a 

numerical  s imulat ion such as the finite element 

method. 

Table l (a)  Coefficients of the fourth order poly- 
nomials for compressive test 

o '=a  + ble~ + b z ~ +  b3e3 +b4e 4 

Materials a bl b2 b3 b4 

2024-T4 0 5.66×104 -1.63×106 -3.I0×107 1.25×109 

6061-T6 0 9.38×104 8.09×106 2.97×10 s -4.0I×109 

7075-T6 0 3.07 × 104 4.08×106 -2.61 ×108 3.62× 10 ~ 

"Fable l(b) Coefficients of the third order poly- 
nomials for tensile test 

o '=a  + blel + b2e2+ b383÷ b4e 4 

Materials a bl b2 b3 b4 

2024-T4 0 2.50 × 107 -2.05 × 108 7.46 × 108 - 1.01 × 109 

6061-T6 0 1.57×10 a -1.37×109 5.32×109 -7.73x109 

7075-T6 l0 74862.36 -4.06×106 1.01xI08 -8.05X108 
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The fourth order polynomials are found to be 

the best appropriate models for compressive and 

tensile, respectively, to represent the relationships 

between dynamic stresses and dynamic strains 

under high strain rate loading conditions. The 

coefficients of the third and fourth order poly- 

nomials for varying aluminum materials are listed 

in Table 1. 

The yield stresses are estimated by drawing a 

0.2% offset line to the best representative slope as 

indicated in Fig. 7. It is found that the relation- 

ships between yield stresses and strain rates are 

quite different from each other corresponding to 

compressive and tensile loading conditions. 

However, it was speculated that these pheno- 

mena are originated from the different experi- 

mental set ups as noted in section 3. We further 

speculated that such phenomena represented the 

material characteristics under different loading 

conditions for tested aluminum alloys. We need 

to investigate this point of view further in detail in 

near future. 

Figs. 8 shows the relationship between yield 

stresses determined by using a procedure sug- 

gested in this study and strain rates. 

The results by Nicholas (Nicholas, 1981) are 

included in Figs. 8 (d), (,e) and (f). It is very in- 

teresting to note that Nicholas' results are well 

agreed with the results estimated in this paper. 

The sensitivity which may be defined as { (O'dyn 

- -  O'stat)/O'stat } for tensile strength of A12024-T4, 

AI6061-T6 and AI7075-T6 are found to be more 

sensitive than compressive strength. And, it is also 

found that compressive yield strength of AI2024- 

T4 and tensile yield strength of A12024T-4, 

A17075-T6 and AI 6061-T6 under high strain- 

rate loading increased in bilinear in the semi- 

logarithmic coordinate system. 

5. Conclusion 

The dynamic deformation behaviors of AI2024- 

T4, AI6061-T6 and AI7075-T6 under both com- 

pressive and tensile loading conditions are esti- 

mated by using SHPB techniques and the tbllow- 

ing experimental results are obtained. 

(1) The relationships between compressive yi- 

eld strength and strain rate for AI6061-T6 and 

AI7075-T6 are linear while the relationships be- 

tween tensile yield strength and strain rate of 

AI2024-T4, A16061-T6 and A1 7075-T6 and the 

relationships between compressive yield strength 

and strain rate of AI2024-T4 are bilinear in the 

semi-logarithmic coordinate system. 

(2) The sensitivity { = ( [~dyn-- O'stat)/O'stat } of 

AI2024-T4, A16061-T6 and AI7075-T6 are found 

to be 93%o, 89% and 211,%o at compressive yield 

strength and 120%, 90%, 45,%o at tensile yield 

strength, respectively. 
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